Ultra-Efficient Low-Power Retinal Nano Electronic Circuit for Edge Enhancement and Detection Using 7 nm FinFET Technology

Author:

Turiqul Islam Md1,Al-Shidaifat Alaaddin1,Jooq Mohammad Khaleqi Qaleh1,Song Hanjung1

Affiliation:

1. Department of Nanoscience and Engineering, Centre for Nano Manufacturing, Inje University, Gimhae, 50834, Republic of Korea

Abstract

This study proposed a 7 nm FinFET based analog one pixel circuit block inspired by lateral inhibition phenomenon to perform edge enhancing and edge detection of optoelectronic image. This plays a crucial role in retinomorphic applications like artificial human retinal functions. Proposed Edge enhancement and edge detection circuits are constructed using two distinct 750×750-pixel silicon networks. First the single pixel circuit cell is reconstructed with the lateral inhibition phenomenon, then the circuit using GPDK (Generic Process Design Kit) in 180 nm, 90 nm, and 45 nm CMOS technology is designed. We used 3×3 convolution process for image masking in digital and analog image signal processing which gives more accuracy in term of object recognition. The power consumption in each case is obtained to be approximately 19.71 μW, 4.18 μW and 1.62 μW for edge enhancing and 23.76 μW, 7.99 μW and 3.41 μW for edge detection which is much larger than the power consumed by the same circuit is implemented with 7 nm FinFET (Fin Field Effect Transistor) technology, 21.91 pW and 24.85 pW. In addition, the size reduction of the circuit reduced by 84% compared with 45 nm CMOS, increases the accuracy of the circuit by 30%. Results confirm that FinFET based single pixel circuit consumes less power, reduces size, and gives higher accuracy. The output from all the circuits has been matched with the biological response.

Publisher

American Scientific Publishers

Reference46 articles.

1. Image processing;Oliva;Metaheuristic Algorithms for Image Segmentation: Theory and Applications,2019

2. Silicon models of lateral inhibition;Wolpert;IEEE Transactions on Neural Networks,1993

3. Retina-inspired neuromorphic edge enhancing and edge detection;Yildirim;AEU-International Journal of Electronics and Communications,2020

4. Analog circuit implementation based on median filter for salt and pepper noise reduction in image;Yildirim;Analog Integrated Circuits and Signal Processing,2021

5. A biologically inspired neurocomputing circuit for image representation;Wei;Neurocomputing,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3