Gas Insulated Switchgear Partial Discharge Type Identification Based on Frequency Division Features and Improved Long Short-Term Memory Neural Networks

Author:

Li Tianhui1,Wang Xiangdong2,Zeng Siming2,Gu Chaomin1,Dong Chi1,Zhen Li3,Zhang Da2,Liu Hongliang2

Affiliation:

1. State Grid Hebei Energy Technology Service Co., Ltd., Shijiazhuang, 050021, China

2. State Grid Hebei Electric Power Research Institute, Shijiazhuang, 050021, China

3. State Grid Hebei Electric Power Supply Co., Ltd., Shijiazhuang, 050021, China

Abstract

In order to ensure the safe and stable operation of gas insulated switchgear (GIS), a new method for identifying the type of partial discharge in GIS is proposed. First, the GIS partial discharge experimental platform produced four partial discharge signals. Second, the energy moments are calculated at each frequency to produce the frequency division features after the four partial discharge signals have been decomposed using variational modal decomposition (VMD). Finally, the type of GIS partial discharge is determined using the LSTM model enhanced by the quantum cuckoo search (QCS) algorithm. The experimental results show that the proposed method can successfully identify four types of partial discharge in GIS with an accuracy of 99%.

Publisher

American Scientific Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3