Experimental Investigation of Viscosity and Thermal Conductivity of Hi-Tech Therm60 Based BaO Nanofluids

Author:

Prakash P.1,Catherine Grace John J.2,Monica Chandramalar I.3,Kingson Solomon Jeevaraj A.1,Mahmoud Mohamed H.4

Affiliation:

1. Department of Physics, LRG Government Arts College for Women, Tirupur, 641604 Tamilnadu, India

2. Department of Mathematics, Karunya Institute of Technology and Sciences, Coimbatore, 641114 Tamilnadu, India

3. Department of Physics, Women’s Christian College, Chennai, 600006 Tamil nadu, India

4. Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

Nanofluids have drawn a lot of interest lately because of their superior heat transmission capabilities. In order to achieve better heat transfer capabilities, a study on the chemical co-precipitation production of barium oxide (BaO) nanoparticles and its Hi-Tech Therm60-based nanofluid was completed in this work. The effective production of the BaO nanoparticles has been validated by investigations using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). There were no discernible alterations in the FT-IR spectra linked to the prepared BaO:Hi-Tech Therm60 nanofluids. This suggests that there is no interaction between the created nanofluid and particles. Next The thermal characteristics of BaO: Hi-Tech Therm60 nanofluids, such as their thermal conductivity and viscosity, were thoroughly examined. Measurements were made of the thermal conductivities of the nanofluid at various weight percentages of nanoparticles (0.001%, 0.002%, 0.003%, 0.004%, 0.005%, and 0.006 wt%) at different temperatures from 28 °C to 50 °C. Temperature and weight fraction increases were observed to correlate with improved thermal conductivity of BaO nanofluids. At 50 °C and 0.001 weight percent, the highest thermal conductivity measured was 0.151 W/mK. 10.4 cP was the equivalent viscosity. Compared to the base fluid, it has good viscosity and thermal conductivity.

Publisher

American Scientific Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3