Effect of Micro-Texture on Cutting Performance of PCBN Cutter

Author:

Li Qinghua1,Shi Hu1,Ma Chunlu1,Xie Lintao1,Yin Chunmei1,Shi Yaochen1

Affiliation:

1. School of Mechanical and Vehicular Engineering, Changchun University, 130022, Changchun, China

Abstract

The research aimed to delve into the intricate relationship between surface microtexture and the cutting performance of a PCBN cutter. In pursuit of this goal, the study implemented three distinct microtextures on the forefront of the turning tool, each of diverse forms. To comprehensively understand the impact, a 3D model was meticulously constructed for simulation purposes. Subsequently, these microtextures were translated into physical form on the tool’s exterior using laser machining, enabling the researchers to conduct real turning experiments. The experimental phase was designed with precision, maintaining consistent environmental conditions across all tests. The primary focus of these experiments was to investigate the forces generated during the turning process. Additionally, the study explored the stress distribution on the tool’s surface and evaluated the texture of the workpiece after machining. The findings revealed valuable insights into the role of microtextures in altering stress dynamics. Specifically, a tool featuring microtexture on its front exhibited a reduction in stress values, strategically shifting the stress focus from the tool’s tip to the microtexture location on the forefront. Moreover, concerning the texture of the workpiece’s surface post-machining, the tool with parallel groove microtexture demonstrated a noteworthy 21% decrease in surface roughness. The study highlighted the pivotal role of surface microtextures in shaping the performance of a lathe tool. These microtextures were identified as agents capable of modifying the immediate friction between the tool and its chip, thereby diminishing surface friction, cutting force, and post-machining surface roughness. The operational stability of lathe machining was also enhanced through these microtextures. Notably, the microtexture characterized by parallel grooves demonstrated a significant improvement in chip-guiding capacity by aligning with the chip flow direction during cutting. The presented research provided a nuanced understanding of how microtextures on a lathe tool’s surface can be strategically employed to optimize cutting performance, offering potential advancements in the field of machining technology.

Publisher

American Scientific Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3