Physiological Responses and Salt Tolerance Evaluation of Purple-Leaf Berberis (Berberis thunbergii var. Atropurpurea) and Glacier Red-Leaf Berberis (Berberis thunbergii) Under NaCl Stress

Author:

Li Yan1,Liu Dongyun1,Du Shaohua1,Lu Bingshe1

Affiliation:

1. College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071001, Hebei, PR China; College of Landscape Architecture and Tourism, Agricultural University of Hebei West Campus, Baoding, 071001, Hebei, PR China

Abstract

This study investigated the impact of various concentrations of NaCl stress treatment (0%, 0.1%, 0.2%, 0.3%, 0.4%) on the growth of one-year-old saplings of purple leaf barberry and glacier red leaf barberry. It also examined the impact on various physiological responses including plasma membrane permeability, antioxidant protective enzyme system, osmotic regulatory substance content, photosynthetic characteristics, ion content, and the ultrastructure of leaf cells using transmission electron microscopy. The goal was to determine the salt tolerance threshold and elucidate the physiological response mechanism to NaCl stress. The comprehensive assessment of salt tolerance in the two barberries was done using fuzzy membership functions. The results demonstrated that increasing concentrations of NaCl stress and longer treatment durations led to gradual decreases in sapling growth and increases in salt damage index. The salt tolerance thresholds were calculated to be 0.37% for purple leaf barberry and 0.33% for glacier red leaf barberry using the logistic curve equation. The activities of SOD and POD initially increased and then decreased in both barberries. Furthermore, MDA, free proline, and Na+ content gradually increased, while soluble protein content, chlorophyll content, net photosynthetic rate (Pn), K+ content, and K+/Na+ ratio gradually decreased. The purple leaf barberry displayed larger and deformed chloroplasts with significant separation of quality and wall, whereas the glacier red leaf barberry experienced a gradual decrease in chloroplast size and number until degradation. The membership function analysis revealed that purple leaf barberry exhibited superior resistance compared to glacier red leaf barberry.

Publisher

American Scientific Publishers

Subject

Renewable Energy, Sustainability and the Environment,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3