Effect of Steam Flash Explosion on Physicochemical and Emulsifying Properties of High-Temperature Rice Bran Meal Protein

Author:

Bi Haixin1,Wang Yingbin2,Chen Zhaojun2,Na Zhiguo1

Affiliation:

1. School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China

2. College of Food Engineering, East University of Heilongjiang, Harbin, 150066, China

Abstract

High-temperature rice bran meal (HTRBM) is a valuable plant protein resource derived from heat-stabilized rice bran after oil extraction. Steam flash explosion (SFE) is a promising method for protein modification and has been shown to be effective in improving the properties of a variety of proteins. However, the effects of SFE on the Maillard reaction and emulsification of HTRBM remain poorly understood. This research evaluated how different SFE conditions affect the browning degree, physicochemical properties, solubility, emulsifying properties, thermal stability, zeta potential, and particle size of rice bran protein. Samples were labeled as follows: Sample 0 (SFE-untreated HTRBM), Sample 1 (0.8 MPa/140 s), Sample 2 (0.8 MPa/180 s), Sample 3 (1.25 MPa/90 s), Sample 4 (1.25 MPa/180 s), Sample 5 (1.7 MPa/90 s), and Sample 6 (1.7 MPa/180 s). Fourier transform infrared (FTIR) spectroscopy, fluorescence spectroscopy, differential scanning calorimetry (DSC), and other methods were employed to measure the aforementioned properties. The results revealed a substantial elevation in the browning degree of rice bran protein after SFE treatment, with A294 increasing by 82.3% and A420 increasing by 46.3% in Sample 4. The solubility and emulsifying properties exhibited notable enhancements, with an increase of 122.48% in solubility (Sample 5), and 26.51% and 26.58% increment in emulsifying activity index (EAI) and emulsifying stability index (ESI), respectively (Sample 3). FTIR and fluorescence spectra revealed the introduction of sugar groups into rice bran protein molecules, resulting in the Maillard reaction. The observed reduction in particle size and rise in zeta potential of rice bran protein emulsions, along with the reduction in denaturation temperature after SFE treatments, further confirmed the significant enhancements in physicochemical and emulsifying properties of HTRBM, thereby enhancing the utilization value of rice bran protein. This study provides a theoretical basis for the development and utilization of HTRBM and its protein.

Publisher

American Scientific Publishers

Subject

Renewable Energy, Sustainability and the Environment,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3