Changes in Nitrogen and Humus During Aerobic Composting Under Antibiotic Composite Pollution

Author:

Zhang Lulu1,Sun Yingying1,Zeng Qiao2,Wang Jing1,Wei Yulu1

Affiliation:

1. Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi’an, 710021, China

2. School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an, 710021, China

Abstract

Antibiotic residues have significantly effects on aerobic composting process. This study was targeted at antibiotic composite pollutants (e.g., sulfanilamides, tetracyclines, and quinolones) and probed into the effects of pollution levels on aerobic composting. With higher initial antibiotic concentrations, the NH4+ –N and NO3 –N concentrations at the end of composting were higher, but TN content decreased, which may be due to the inhibition effects of antibiotics on nitrogen-fixing bacteria and thus were unfavorable for nitrogen accumulation. Antibiotic pollution obviously delayed composting maturity, and the antibiotics at initial concentration above 306.12 mg/kg were significantly toxic to seeds. Analysis of structural changes in dissolved organic matter (DOM) showed the humification after treatments CK and AT100 mainly occurred at the high-temperature stage (day 2–14) and later lower-temperature maturity stage (day 21–36). Humification after treatment AT300 mainly happened at the high-temperature stage (day 2–14), and that in AT600 mainly occurred at the early temperature rise and high-temperature stage (day 2–7). This study comprehensively evaluated the effect of antibiotic composite pollution on the maturity of aerobic compost, and provided a theoretical basis for the treatment of antibiotic composite pollution materials in practical production.

Publisher

American Scientific Publishers

Subject

Renewable Energy, Sustainability and the Environment,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3