Effects of 24-Epibrassinolide on DNA Methylation Variation in Soybean (Glycine max) Leaf and Root Under Saline-Alkali Stress

Author:

Peng Ya-Nan1,Li Jing1,Sun Dan-Dan1,Chen Nan1,Wang Quan-Wei1

Affiliation:

1. Provincial Key Laboratory of Molecular Genetics and Genetic Breeding, Harbin Normal University, Harbin 150000, China

Abstract

Saline-alkali stress is major stress that severely reduces plant growth and productivity, it is necessary to make clear whether exogenous 24-epibrassinolide (EBR) can improve the salt-alkali resistance of soybean (Glycine max) by affecting its DNA methylation. In this study, the effects of EBR on soybean adaptation to saline-alkali stress, genomic DNA methylation level and pattern changes in saline-alkali-stressed leaf and root with or without EBR treatment were compared using methylation-sensitive amplified polymorphism (MSAP). In the results, saline-alkali stress increased DNA methylation levels in leaf and root, with higher respective hemi-methylation and global methylation rates observed in leaf (6.22, 22.24%) than root (5.72, 21.76%). EBR application reduced leaf and root DNA methylation levels, with leaf hemi-methylation rate (6.15%) exceeding that of root (4.25%) and leaf global methylation rate (21.79%) below that of root (22.51%). There were distinct DNA remethylation and demethylation variations across different tissues and treatments, demethylation in leaves was dominant. Meanwhile, untreated saline-alkali-stressed roots exhibited major demethylation-based variations, while remethylation variations predominated post-treatment. Under saline-alkali stress, root remethylation and demethylation rates (6.17, 7.55%, respectively) both exceeded respective leaf rates (5.18 and 7.46%); however, post-EBR treatment, root methylation rate (6.45%) exceeded leaf rate (5.38%), while root demethylation rate (6.13%) fell below leaf rate (6.94%). In conclusion, exogenous EBR application to saline-alkali-stressed soybean can influence leaf and root genomic DNA methylation levels and patterns via distinct tissue-specific methylation mechanisms.

Publisher

American Scientific Publishers

Subject

Renewable Energy, Sustainability and the Environment,Biomaterials,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3