The Effects of the Surface Properties of a Gold Nanorod on Its In Vitro/Vivo Toxicity Against Cancer Cells
-
Published:2019-11-01
Issue:11
Volume:15
Page:2262-2270
-
ISSN:1550-7033
-
Container-title:Journal of Biomedical Nanotechnology
-
language:en
-
Short-container-title:j biomed nanotechnol
Author:
Gong Jing,Zhang Yingying,Huang Yong,Zhang Tingying,Liang Beibei,Hu Shuangyan,Zhu Minhui,Hua Libo,Zhang Guopin,Yin Wei,Shao Chengwei,Zheng Hongliang,Li Wei
Abstract
Gold nano rods (GNRs) have showed cytotoxicity to cancer cells. At the same time, it shows little effects on non-tumor cells. Between GNRs and sub-cellular organelles, the understanding of interaction plays a very important role to determine the intracellular mechanisms. The purpose
of what we done is to explain the effects of the surface properties of GNRs on specific cancer cell death. Three GNR samples with different aspect ratios were finely prepared by the seed-mediated growth method. Then the intracellular transport and the in vitro/vivo mechanisms of cancer
cell death were studied by transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), laser light scattering, and flow cytometry (FCM). It was found that GNRs700 exhibited the largest photothermal conversion efficiency. However, the GNR660 with or without light stimulation
exhibited the highest cytotoxicity against cancer cells, which was contradict to the general knowledge. Detailed intracellular investigations showed that the lysosome was the key sub-organelle affecting the GNR function. Further experiments revealed that cytotoxicity was strongly affected
by the GNR's surface potential. This potential was actually related to the density of surface cationic molecules, which further regulated lysosomal membrane penetration. The results obtained herein indicated that the physicochemical properties of the surface potential mediated the specific
toxicity of GNRs against tumours.
Publisher
American Scientific Publishers
Subject
Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献