The Effects of the Surface Properties of a Gold Nanorod on Its In Vitro/Vivo Toxicity Against Cancer Cells

Author:

Gong Jing,Zhang Yingying,Huang Yong,Zhang Tingying,Liang Beibei,Hu Shuangyan,Zhu Minhui,Hua Libo,Zhang Guopin,Yin Wei,Shao Chengwei,Zheng Hongliang,Li Wei

Abstract

Gold nano rods (GNRs) have showed cytotoxicity to cancer cells. At the same time, it shows little effects on non-tumor cells. Between GNRs and sub-cellular organelles, the understanding of interaction plays a very important role to determine the intracellular mechanisms. The purpose of what we done is to explain the effects of the surface properties of GNRs on specific cancer cell death. Three GNR samples with different aspect ratios were finely prepared by the seed-mediated growth method. Then the intracellular transport and the in vitro/vivo mechanisms of cancer cell death were studied by transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), laser light scattering, and flow cytometry (FCM). It was found that GNRs700 exhibited the largest photothermal conversion efficiency. However, the GNR660 with or without light stimulation exhibited the highest cytotoxicity against cancer cells, which was contradict to the general knowledge. Detailed intracellular investigations showed that the lysosome was the key sub-organelle affecting the GNR function. Further experiments revealed that cytotoxicity was strongly affected by the GNR's surface potential. This potential was actually related to the density of surface cationic molecules, which further regulated lysosomal membrane penetration. The results obtained herein indicated that the physicochemical properties of the surface potential mediated the specific toxicity of GNRs against tumours.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3