Intratumoral Injection of Norcantharidin-Loaded Poly(D,L-lactide)-b-Poly(ethylene glycol)-b-Poly(D,L-lactide) Thermosensitive Hydrogel for the Treatment of Primary Hepatocellular Carcinoma
-
Published:2019-10-01
Issue:10
Volume:15
Page:2025-2044
-
ISSN:1550-7033
-
Container-title:Journal of Biomedical Nanotechnology
-
language:en
-
Short-container-title:j biomed nanotechnol
Author:
Xue Bingxin,Lei MinYi,Shi Kun,Wang MengYao,Hao Ying,Xiao Yao,Yuan Liping,Peng JinRong,Qian ZhiYong
Abstract
In this study we employed self-designed PDLLA-PEG-PDLLA (PLEL) thermosensitive hydrogel to blend with norcantharidin (NCTD), a hydrophilic chemotherapeutic drug possessing curative effect on primary hepatocellular carcinoma (HCC) and adverse effects, then utilized the composite in HCC
interstitial chemotherapy. PLEL copolymer was synthesized by ring-opening polymerization, NCTD-loaded PLEL hydrogel was prepared in a simple and reasonable way. The addition of NCTD had no significant effect on the temperature-dependent rheological properties of PLEL hydrogel. The pH values
of NCTD-loaded gel solutions (13 wt%) and free NCTD solutions with three drug concentrations of 0.4 mg/mL, 0.8 mg/mL and 1.2 mg/mL under different storage conditions met the pH requirement of small-volume injection. There was no significant difference among the drug release behaviors of NCTD-loaded
gels with drug concentrations of 0.4 mg/mL, 0.8 mg/mL and 1.2 mg/mL, they fitted first-order dynamics, exhibited significantly slower drug release than free drug solutions and the release was mainly based on drug diffusion. Drug-loaded gel solution (13 wt%) could evenly distribute throughout
tumor tissue before converting into gel after being intratumorally injected and was able to significantly prolong retention time of the drug in tumor compared to free drug solution. The sustained-release performance of NCTD-loaded gel (13 wt%) was confirmed from the perspective of pharmacodynamics
in vitro. The in vivo evaluation demonstrated that intratumoral injection of NCTD-loaded PLEL gel (13 wt%) was capable of improving curative effect of the drug and reducing its toxicity.
Publisher
American Scientific Publishers
Subject
Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献