Semiconductor Photoanode Photoelectric Properties of Methanol Fuel Cells

Author:

Zhao Shuaitongze,Xu Shifeng

Abstract

One-dimensional TiO2, ZnO, and Fe2O3 nanorod arrays are selected as the photocatalytic methanol fuel cell photoanodes, and a greenhouse catalytic methanol fuel cell device is designed. With the photo-generated holes' participation in fuel molecules' oxidation in the semiconductor electrode, chemical energy is converted into electric energy. Firstly, with pot-doped tin dioxide (TRS) as the substrate, TiO2, ZnO, and Fe2O3 nanorod arrays are prepared by hydrothermal method. TiO2 and ZnO are excellent photoelectric catalytic materials with similar energy band capability and strong separation capability for photo-generated charges in the energy band analysis. With a narrow band gap, Fe2O3 can be oxidized by water with visible light. In the experiment, different anodes' photoelectric properties are tested by the Mott-Schottky equation, cyclic voltammetry, and electrochemical analysis. The results show that the ZnO-based photoanode's maximum short-circuit current can reach 1.86 mA/cm2, and its open-circuit voltage can reach 1.15 V, the ZnO-based photoanode's 0.92 mA/cm2 and 1.36 V, and the Fe2O3-based photoanode's 0.08 mA/cm2 and 1.18 V. Compared with Fe2O3 electrodes, TiO2 and ZnO thin-film electrodes have better photocurrent conversion ability in dark, simulated sunlight, and visible light conditions. Fe2O3 electrodes can also generate strong instantaneous anode photocurrents after irradiation.

Publisher

American Scientific Publishers

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3