Electronic Structures and Spectroscopic Properties of Fluorescent Sensor Reacting with Volatile Organic Compounds: A Theoretical Analysis

Author:

Gu Haiyang1,Huang Xingyi2,Chen Quansheng1,Ping Tan Chin1,Sun Yanhui1

Affiliation:

1. School of Bio and Food Engineering, Chuzhou University, Chuzhou, 239000, China

2. School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China

Abstract

A theoretical study of copper porphyrin (CuP), without any meso substituent, reacting with different volatile organic compounds (VOCs), recently applied as the dye in the fluorescent array sensor was calculated for the ground and excited electronic states. Geometry structures of CuP and its complexes were optimized by using density functional theory coupled with B3LYP/LAN2DZ basis set, whereas excitation energies were calculated by time-dependent density functional theory at the same level. The calculated relative energies of CuP and its complexes have displayed the following order: CuP-L6 < CuP-L1 < CuP-H2S < CuP < CuP-L4 < CuP-L2 < CuP-O2 < CuP-L5 < CuP-L3. The relative energies between CuP and propionaldehyde (L6) possess the lowest energy gap, causing the binding to react more efficiently and faster than the other complexes. The results also reveal that the addition of VOCs has a significant influence on the spectrum property and energy gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). This study suggests that the calculation result is useful for the application of a CuP-based fluorescent array sensor for a special analyte.

Publisher

American Scientific Publishers

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3