A Self-Powered Wearable Ultraviolet Radiation Detector Integrated with Wireless Devices Based on T-ZnO/PVDF Composite Fabric

Author:

Zhang Wanglinhan1,Xue Xinyu1

Affiliation:

1. College of Sciences, Northeastern University, Shenyang 110004, China

Abstract

Research on wearable devices has promoted the development of real-time ultraviolet intensity monitoring technology. This paper proposes a self-powered wearable ultraviolet radiation detector based on T-ZnO nanowires/PVDF composite fabric. The soft fabric base allows the device to attach to various muscles of the human body. Due to the piezoelectric and photoelectric properties, the devices can transform mechanical energy into electrical energy. The output closely relates to the ultraviolet intensity. Therefore, this kind of stable, flexible, and micro device can output piezoelectric voltage as both an energy source and a sensing signal on human bodies. Experiments have proved that the wearable ultraviolet detector has high sensing stability and can work on the skin. The self-powered feature allows it to integrate with wireless transmission equipment, which can upload the ultraviolet intensity data collected by the self-powered wearable ultraviolet radiation detector to the Big Data Cloud. This system will contribute to the formation of the Internet of Things.

Publisher

American Scientific Publishers

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Regulation of Photoelectric Properties of Heterojunction Device by Oxygen Adsorption on ZnO Surface;Journal of Nanoelectronics and Optoelectronics;2022-03-01

2. Self-Powered Wearable Cardiac Stethoscope for Real-Time Monitoring Heart Failure;Journal of Nanoelectronics and Optoelectronics;2021-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3