Microstructure and mechanical properties of a high-carbon bainitic steel containing Si/Al by different heat treatment processes

Author:

Naseem Sufyan1,Liu Enzuo1,Huang Xuefei1,Huang Weigang1

Affiliation:

1. College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China

Abstract

The present study aims to investigate the microstructure and mechanical properties of 0.79 C wt% bainitic steel containing Si and Al by three heat treatment processes: austempering and tempering (B-T), two-step austempering (2S-A) and the austempering-quenching-partitioning (AQP). The optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD), transmission electron microscope (TEM) and electron backscatter diffraction (EBSD) were employed to analyze the microstructure of samples. The results demonstrate that the sample subjected to the AQP process exhibited a multiphase microstructure with martensite, filmy retained austenite (RA) and fine bainitic laths. The AQP sample evidenced a high tensile strength of 1705 MPa, yield strength of 1254 MPa, a better total elongation of 16.6%, product of strength and elongation (PSE) of 28 GPa% and the impact toughness of 33 J among all heat treatment processes. The higher strength and toughness could be ascribed to the fine bainitic ferrite as well as an appropriate amount of filmy retained austenite. A fraction of martensite that was formed during the quenching step at 110 °C possibly divided the untransformed austenite into small areas, which could refine the microstructure. EBSD analysis showed that the AQP sample exhibited a higher proportion (64%) of boundary misorientation angle greater than 15° than that of the 2S-A. These high angle boundaries can improve the toughness of steel.

Publisher

American Scientific Publishers

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3