Growth of n-Ga doped ZnO nanowires interconnected with disks over p-Si substrate and their heterojunction diode application

Author:

Al-Hadeethi Yas,Badran Rashad I.,Umar Ahmad,Al-Heniti Saleh. H.,Raffah Bahaaudin M.,Alharbi Abdulrazak M.

Abstract

In this paper, the heterojunction diode based on n-Ga doped ZnO nanowires interconnected with disks/p-Si assembly was fabricated and their low-temperature electrical properties were examined. The Ga-doped ZnO nanowires interconnected with disks were grown over p-Si substrate and studied by numerous techniques to understand the structural, compositional and morphological characteristics. Electrical properties, at lowtemperatures ranging from 77 K–295 K, were examined for the fabricated heterojunction diode assembly both in reverse and forward biased conditions which exhibited an excellent stability over all the temperature range. The detailed electrical characterizations revealed that the current decreases gradually from 1.9 μA, to 0.87 μA to 0.84 μA when temperature increases from 77 K, 100 K to 150 K and then increases gradually from 1.86 μA–3.36 μA and to 9.95 μA when temperature increases from 200 K–250 K and to 295 K, respectively. Both the highest rectifying ratio at 100 K and the lowest one at 295 K occur in the voltage range of 2–5 V.

Publisher

American Scientific Publishers

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3