Nanoparticles as void fillers in glass ionomer cement for enhanced physicomechanical properties

Author:

Assery Mansour K. A.1,Alshubat Abdulrahman2,Abushanan AlWaleed3,Labban Nawaf4,Hashem Mohamed5

Affiliation:

1. Department of Prosthodontics, College of Dentistry, Riyadh Elm University, Riyadh, 11681, KSA

2. Alahsa Dental Center, Ministry of Health, Al Hofuf, 36441, KSA

3. Department of Preventive Dental Sciences, College of Dentistry, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, KSA

4. Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh, 11475, KSA

5. Department of Dental Health, College of Applied Medical Sciences, King Saud University, Riyadh, 11474, KSA

Abstract

The study evaluated the addition of silver (Ag) and titanium dioxide (TiO2) nanoparticles to conventional glass ionomer cement (GIC), considering compressive strength (CS), diametral tensile strength (DTS), flexural strength (FS), and hardness. Ag and TiO2 nanoparticles were blended into the powder of a commercially available GIC restorative material at 5% (w/w). Unblended powder was used as a control. One hundred twenty samples were prepared from two study groups and one control group (n = 10). CS, DTS, and FS were evaluated using a universal testing machine, while hardness was measured by Vickers microhardness testing. The data obtained were analyzed using One-way analysis of variance and the Tukey?s test (p < 0.05). GIC containing Ag and TiO2 nanoparticles significantly improved the CS, DTS, and hardness compared to the control group (p < 0.05). However, the FS was not much affected by the addition of either of the nanoparticles (p >0.05). TiO2 blended GIC demonstrated significantly higher CS (154.20+2.38) and DTS (13.2±0.5 MPa) compared to control 117.2±1.2 MPa and 7.2 ±0.8 MPa, respectively. While Blend of GIC+Ag nanoparticles showed the highest FS (29.0±0.7 MPa). Additionally, the blend of GIC+TiO2 exhibited the highest hardness (90.4±1.1 VHN). Ag and TiO2 blended GICs might guarantee their use in occlusal or higher stress-bearing areas.

Publisher

American Scientific Publishers

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3