High photoresponsivity and external quantum efficiency of ultraviolet photodetection by mechanically exfoliated planar multi-layered graphene oxide sheet prepared using modified Hummer's method and spin coating technique

Author:

Ahmad H.,Thandavan T. M. K.

Abstract

Electron–hole (eh) pair generation and conversion into photocurrents by two-dimensional (2D) nanoparticle based metal semiconductor metal (MSM) structured photodetector is crucial for the development self-powered and high performance photodetectors. In this regard, graphene oxide (GO) is a highly suitable photoconducting material alongside graphene and reduced graphene oxide (rGO). A modified Hummer's method is applied to obtain the GO supernatant which undergoes morphological, structural and vibrational characterizations. The D and G bands observed at 1347 and 1592 cm–1 from the spectral analysis are due to the A1g symmetry sp3 carbon (C) and E2g phonons by sp2 C respectively, confirming the formation of GO. Electron beam evaporation is carried out to fabricate the silver (Ag) source and drain electrode fringes with 300 nm separation for current– voltage characterization. Non-linear and non-rectifying behavior is observed on the MSM structured multilayer GO film. The ideality factor and barrier height, calculated from the thermionic emission model at the Schottky junction of source is found to be lower than that of the drain. The mechanically exfoliated GO onto the Ag electrodes enables a high photoresponsivity and external quantum efficiency (EQE) about 4.12 AW–1 and 1346% to be attained. This shows that GO can behave as either a p- or n-type semiconducting materials.

Publisher

American Scientific Publishers

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 1Dand2DSemiconducting Hybrid Nanostructures for Advanced Photodiodes;1D Semiconducting Hybrid Nanostructures;2022-12-02

2. Flexible and stretchable conductive fabric for temperature detection;2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS);2022-07-10

3. An investigation of the Structural, Electrical and Optical Properties of Graphene-Oxide Thin Films Using Different Solvents;Journal of Physics: Conference Series;2021-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3