Individualized artificial titanium alloy spinal lamina with 3D printing technology

Author:

Li Jianwen,Li Songbo,Liu Xianyin,Wei Fuxin,Wang Xiaoshuai,Fang Guanjun,Chen Yaoxin,Liu Zhiwei,Lu Jianfeng,Ye Guobiao,Zhong Shu,Yin Yuchao

Abstract

Background: Laminectomy and decompression is a common procedure for treating spine diseases. However, due to the lack of a posterior, bony braced structure, the dural sac and nerve roots can adhere to the surrounding tissues, and scar formation can occur in muscle and soft tissues. This can cause new compression post surgery, and failure of the operation. Objective: This study aimed to produce an individualized titanium alloy spine lamina using 3D printing technology, and to evaluate its effectiveness by implantation in human cadaveric spines. Methods: Six adult lumbar cadaver specimens were used, and computed tomography (CT) was used to obtain DICOM medical digital image standard data. The lumbar vertebrae structure was reconstructed by three-dimensional (3D) modeling software, and then simulated lumbar laminectomy was performed. Based on the characteristics of the original lamina, an artificial spine lamina was designed, including suture holes at the posterior ligament attachment point and a locking screw hole for fixation. A titanium alloy spine lamina was fabricated by 3D printing, and a guide plate to assist artificial lamina implantation was designed. Using the guide plated, L4 lumbar vertebrae segment laminectomy was performed on the 6 lumbar spine specimens, titanium alloy spine lamina were implanted and fixed with cortical bone trajectory screws. After implantation, CT was performed to record the length of the screw, the trajectory of the screw in the pedicle, and changes of bony spinal canal volume and anteroposterior diameter of the spinal canal. Results: The morphology of artificial spine lamina matched that of the original lamina. The artificial lamina was easy to implant, and matched the original lamina. The laminas were fixed by 12 cortical screws (diameter, 4.5 mm; median length, 34.67 ± 1.97 mm). CT scan indicated that all screws passed through the pedicle cortex by < 2 mm (2 screws penetrated the inner wall). The bony canal volume of the L4 vertebral pedicle was 311.23 ± 38.17 mm2 before operation and 356.17 ± 43.11 mm2 after operation, and there was statistical difference (P < 0.001). The anteroposterior diameter of spinal canal was 17.82 ± 2.03 mm before surgery and 20.67 ± 2.38 mm after surgery, and they were statistically different (P < 0.001). Conclusion: An individualized artificial titanium alloy spine lamina designed and produced with 3D printing technology can be used to reconstruct the structure of the posterior spine complex after lumbar laminectomy. The artificial lamina can increase the volume of the spinal canal and provide a posterior ligament reconstruction attachment point.

Publisher

American Scientific Publishers

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3