Combined study on the action and mechanism of G-Rg1/Sr-CaS bone substitute material for ossification and pro-vascularization

Author:

Li Xue,Hong Shi,Tan Caixia,Peng Bo,Wu Zhengjie,Zhu Yongzhan

Abstract

Neovascularization is important for bone repair, vascularization, and ossification during bone repair. Ginsenoside Rg1 (G-Rg1), which is the main extract of ginseng, has been shown to promote therapeutic angiogenesis. It has been studied in the field of biomaterials, but there is no relevant report in the field of bone substitute materials. In this study, we successfully prepared the bone substitute material combining calcium sulphate (Sr-CaS) with G-Rg1 on the basis of previous research work. In vitro experiments were carried out to verify the ossification of composites by using mouse bone marrow mesenchymal stem cells (BMMSCs) and the ossification was quantified by western blot. The related proteins in the key signaling pathways for the different concentrations of G-Rg1/Sr-CaS composite extract were studied to determine whether there was receptor competition and to find the optimal ratio parameters. The vascularization of the composite was verified in the human umbilical vein endothelial cells (HUVECs) model, and finally the coordination of pro-vascularization and ossification was evaluated in the mouse critical bone defect model. The results indicated that G-Rg1/Sr-CaS composites contributed to ossification in the mouse BMMSC model and vascularization in the HUVEC model. The G-Rg1/Sr-CaS composites resulted in significantly greater bone mineral densities and bone volume/total volume of the defect group compared to the control group. Histological analysis showed that the G-Rg1/SrCaS was resorbable with satisfactory biocompatibility. The doped strontium ions enhanced the bone repair performance of G-Rg1/Sr-CaS in the mouse model and the new substitute demonstrated promising results for clinical use.

Publisher

American Scientific Publishers

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3