Recommender System: Towards Classification of Human Intentions in E-Shopping Using Machine Learning

Author:

Kaur Babaljeet1,Sharma Richa1,Rani Shalli1,Gupta Deepali1

Affiliation:

1. Chitkara University Institute of Engineering and Technology, Chitkara University, 140401, Punjab, India

Abstract

Recommender systems were introduced in mid-1990 for assisting the users to choose a correct product from innumerable choices available. The basic concept of a recommender system is to advise a new item or product to the users instead of the manual search, because when user wants to buy a new item, he is confused about which item will suit him better and meet the intended requirements. From google news to netflix and from Instagram to LinkedIn, recommender systems have spread their roots in almost every application domain possible. Now a days, lots of recommender system are available for every field. In this paper, overview of recommender system, recommender approaches, application areas and the challenges of recommender system, is given. Further, we study conduct an experiment on online shoppers’ intention to predict the behavior of shoppers using Machine learning algorithms. Based on the results, it is observed that Random forest algorithm performs the best with 93% ROC value.

Publisher

American Scientific Publishers

Subject

Electrical and Electronic Engineering,Computational Mathematics,Condensed Matter Physics,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3