Give Attention to Overlapping Network Detection in Networks for Multimedia

Author:

Selvan Mercy Paul1,Gupta Akansha1,Mukherjee Anisha1

Affiliation:

1. Department of Computer Science and Engineering, Sathyabama Instititue of Science and Technology, Chennai 600119, India

Abstract

Finding overlapping agencies from multimedia social networks is an thrilling and important trouble in records mining and recommender systems but, existing overlapping network discovery often generates overlapping community structures with superfluous small groups. Network detection in a multimedia and social network is a conducive difficulty in the network gadget and it helps to understand and learn the overall network shape in element. Those are essentially the dividing wall of network nodes into a few subgroups in which nodes within these subgroups are densely linked, but the connections are sparser in between the subgroups. Social network analysis is widely widespread domain which draws the attention of many information mining experts. Some wide variety of actual community common characteristics which it shares are facebook, Twitter show off the idea of network shape inside the community. Social network is represented as a community graph. Detecting the groups entails locating the densely linked nodes.

Publisher

American Scientific Publishers

Subject

Electrical and Electronic Engineering,Computational Mathematics,Condensed Matter Physics,General Materials Science,General Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection of Ransomware Based on Recurrent Neural Network (RNN);Lecture Notes in Electrical Engineering;2021

2. Attribute-Based Data Management in Crypt Cloud;Advances in Systems, Control and Automations;2021

3. An Integrated and Dynamic Commuter Flow Forecasting System for Railways;Advances in Systems, Control and Automations;2021

4. Semantic-Based Duplicate Web Page Detection;Advances in Systems, Control and Automations;2021

5. Intelligent Analysis for Wind Speed Forecasting Using Neural Networks;Advances in Systems, Control and Automations;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3