Modified Ridge Type Estimator in Partially Linear Regression Models and Numerical Comparisons

Author:

Aydın Dursun1,Yüzbaşı Bahadır2,Ahmed S. Ejaz3

Affiliation:

1. Department of Statistics, Faculty of Sciences, Muğla S. K. University, Muğla 48000, Turkey

2. Department of Econometrics, Inonu University, Malatya 44280, Turkey

3. Faculty of Mathematics and Science, Brock University, St. Catharines, ON, L2S 3A1, Canada

Abstract

In this article, we introduce a modified ridge type estimator for the vector of parameters in a partially linear model. This estimator is a generalization of the well-known Speckman’s approach and is based on smoothing splines method. Most important in the implementation of this method is the choice of the smoothing parameter. Many Criteria of selecting smoothing parameters such as improved version of Akaike information criterion (AICc), generalized cross-validation (GCV), cross-validation (CV), Mallows’ Cp criterion, risk estimation using classical pilots (REC) and Bayes information criterion (BIC) are developed in literature. In order to illustrate the ideas in the paper, a real data example and a Monte Carlo simulation study are carried out. Thus, the appropriate selection criteria are provided for a suitable smoothing parameter selection.

Publisher

American Scientific Publishers

Subject

Electrical and Electronic Engineering,Computational Mathematics,Condensed Matter Physics,General Materials Science,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Regression shrinkage and selection variables via an adaptive elastic net model;Journal of Physics: Conference Series;2021-05-01

2. Optimum shrinkage parameter selection for ridge type estimator of Tobit model;Journal of Statistical Computation and Simulation;2020-11-06

3. References;Wiley Series in Probability and Statistics;2019-02-01

4. A new method for choosing the biasing parameter in ridge estimator for generalized linear model;Chemometrics and Intelligent Laboratory Systems;2018-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3