Effect and Mechanism of CircPTPN4 Expression in Carboxylated Single-Walled Carbon Nanotubes on Renal Fibrosis

Author:

Liu Yuhan1,Teng Yan1,Jing Fangkun2,Zhang Yanning1

Affiliation:

1. Department of Nephrology, Northern Theater General Hospital, Shenyang, 110000, China

2. Department of Neurosurgery, Liaoning Provincial People’s Hospital, Shenyang, 110000, China

Abstract

This research was aimed to investigate the effect of circPTPN4 overexpression in carboxylated single-walled carbon nanotubes (SWCNT-COOH) on renal fibrosis (RF) in mice. SWCNT was oxidized to SWCNT-COOH by concentrated sulfuric acid and nitric acid (3:1, v/v). After characterization and analysis, the effect of SWCNT-COOH on erythrocyte status was detected. The RF mice (RFM) model was induced by SWCNT-COOH, normal mice as normal control (NC), and 1×108 TU/mL lenti-NC was injected into the tail vein as negative control, and 1×108 TU/mL lenti-circPTPN4 was injected for circPTPN4 overexpression. The expression of circPTPN4 was tested by qRT-PCR. Serum creatinine (Cr), blood urea nitrogen (BUN), interleukin 1β (IL-1β), IL-6, transforming growth factor β1 (TGF-β1), kidney injury molecule 1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) were tested by ELISA. HE, Masson, and immunohistochemistry were used to detect the pathological changes of kidney tissue. The protein expressions of collagen I (COL1), fibronectin (Fn), α-SMA, TGF-β1, Smad3, p-Smad3, and Smad7 were tested by Western blot (WB). It presented SWCNT-COOH was successfully prepared by chemical oxidation method, with an average particle size of 98.1 nm and an average Zeta potential of −38.91 mV. SWCNT-COOH had good hydrophilicity, and did not cause aggregation and morphology changes of red blood cells. As against NC, the expression of circPTPN4 in RFM and lenti-NC groups was decreased; the kidney coefficient was increased, and the normal structure of the kidney was abnormal, accompanied by inflammatory cell infiltration and collagen microformation; serum Cr, BUN, IL-1β, IL-6, and TGF-β1 were increased, and KIM-1 and NGAL in renal cortex were decreased; the protein expressions of COL1, Fn, α-SMA, TGF-β1, and p-Smad3 in the kidney were increased, and the protein expression of Smad7 was decreased (P <0.05). As against RFM, the expression of circPTPN4 in lenti-circPTPN4 group was increased; the kidney coefficient decreased and the kidney structure returned to normal; COL1, Fn, α-SMA, TGF-β1, and p-Smad3 in the kidney were decreased, and that of Smad7 was increased (P <0.05). SWCNT-COOH has good blood compatibility characteristics and can induce RF in mice. The expression of circPTPN4 was down-regulated in the RFM. Overexpression of circPTPN4 can restore the normal renal function of RFM, inhibiting the inflammatory response and RF process.

Publisher

American Scientific Publishers

Subject

General Materials Science

Reference41 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3