Cytotoxicity Modelling of Pasteurella multocida Toxin and Its Histological Study

Author:

Lu Heng1,Shen Huanhuan1,Huang Yong1

Affiliation:

1. College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611100, China

Abstract

In this study, we investigated the molecular mechanism by which the recombinant multicidal Bartonella toxin rPMT damages PK15 cells. We successfully constructed the prokaryotic expression vector pCold I-toxA and identified suitable expression and purification conditions for rPMT. Using the CCK8 assay, we established a cellular damage model and found that PK15 cells were significantly affected by rPMT infection at a concentration of 20 ug/mL for 24 h. Flow cytometry experiments revealed that rPMT induced apoptosis in PK15 cells. To further understand the underlying mechanism, we prepared a potent murine anti-polyclonal antibody against rPMT and evaluated its effectiveness (potency of 1:1000). In mouse experiments, the LD50 of rPMT was determined to be 0.460 ng/g. Transcriptome sequencing data indicated that rPMT injury to PK15 cells led to elevated expression of inflammation-related pathways and genes. Additionally, QPCR experiments confirmed that rPMT injury significantly upregulated the expression of inflammation-related factors, including NLRP3, IL-1β, IL-6, IL-8, and TNF-α, compared to normal PK15 cells. In conclusion, the recombinant PMT toxin (rPMT) used in this study exhibited high biological activity and caused significant damage to PK15 cells, possibly through an inflammatory validation effect. These findings shed light on the molecular mechanisms underlying rPMT-induced cellular damage and its potential role in inflammation-related pathways.

Publisher

American Scientific Publishers

Subject

General Materials Science

Reference21 articles.

1. Pasteurella multocida: Genotypes and genomics;Peng;Microbiology and Molecular Biology Reviews,2019

2. Molecular biology of Pasteurella multocida toxin;Orth;Current Topics in Microbiology and Immunology,2012

3. Signaling cascades of Pasteurella multocida toxin in immune evasion;Kubatzky;Toxins,2013

4. A protein-based subunit vaccine with biological adjuvants provides effective protection against Pasteurella multocida in pigs;Wu;Veterinary Research,2023

5. Recent insights into Pasteurella multocida toxin and other G-protein-modulating bacterial toxins;Wilson;Future Microbiology,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3