Effects of ROS-Sensitive Nanoparticles Loaded with Interstitial Cell Derived Factors on Vascular Smooth Cell Adhesion, Proliferation, and Endothelialization

Author:

Zhang Ke1,Ding Jieling2

Affiliation:

1. Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China

2. Department of Urology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China

Abstract

Local high concentrations of stromal cell-derived factor 1 (SDF-1) attract and trap stem cells to involve in the vascular repair when the skin is damaged. In this research, mercaptan ketone polymer (PRGY) was selected as a nano-carrier to prepare ROS-sensitive nanoparticles (NPs) loaded with SDF-1 by means of volatilization of a complex emulsion solvent. The NPs were characterized by a transmission electron microscope (TEM) and a particle size (PS) analyzer, the protein content of the NPs was evaluated by a BCA method, the cytotoxicity was evaluated by CCK8, and the NPs were subjected to the in vitro release (IVR) test. An acute mouse wound model was established, the pathological effect of NP solution on major organs of mice was observed by HE staining after intravenous injection, and the effect of targeted release of NP on animal model was evaluated. To analyze the effect of NPs on wound healing, the mouse models were rolled into different groups. They were sacrificed two weeks after the wound healing was completed, the blood vessels were fixed with perfusion solution, and the common artery where the wound was located was taken for follow-up study. The results suggested that the NPs exhibited a PS of 122.57±18.33 nm, a loading rate of 1.7%, and spherical and uniform surfaces. The IVR tests showed that the NPs could release rapidly under high ROS conditions. The wound model of mice was established, and the injection of NP solution revealed that it could target the wound area. The healing speed in the NP group was the fastest (P <0.05). Smooth muscle cells (SMCs) and endothelial cells (ECs) were isolated from common artery, and proliferation of them in the NP group was found to be obvious (P <0.05), and the adhesion of vascular SMCs could be accelerated at the same time.

Publisher

American Scientific Publishers

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3