Treatment Promotion of Osteoporotic Fractures by microRNA-320 Nanocapsules Through Stimulating Bone Marrow Mesenchymal Stem Cells

Author:

Qian Ligang1,Li Qinggui1,Ren Qiao2

Affiliation:

1. Department of Orthopedics, Accessorial Hospital of HeBei University, Baoding, Hebei, 050031, China

2. Department of Rheumatology and Immunology, Accessorial Hospital of HeBei University, Baoding, Hebei, 050031, China

Abstract

We aimed to explore the mechanism underlying microRNA-320 (miR-320)’s role in osteoporotic fractures. miR-320 nanoparticles were prepared and their characterization was detected by Zetasizer Nano and triethylamine (TEA). miR-320 nanoparticles were interacted with bone marrow mesenchymal stem cells (BMSCs). Then we conducted MTT to assess cytotoxicity in BMSCs and determined genes expression. A mouse fracture model was established and treated with miR-320 nanoparticles or pore nanoparticles. The release of miR-320 and the bone repair at the fracture site were detected. Treatment of Ceramic matrix composites (CMCS) (miR-320) sensitive to Matrix metalloproteinase (MMP) released miR-320 to bone defect, which promoted the transcription of osteogenic genes and stimulated the osteogenesis. Finally, treatment of miR-320 nanoparticles facilitated bone repair of mouse osteoporotic defect. MMP-sensitive nanocapsules loaded with miR-320 can promote osteogenic potential and stimulate fracture repair, providing insight into novel treatment against osteoporotic fracture.

Publisher

American Scientific Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3