Effect of Polystyrene Targeting Nanoparticles on Lung Injury in Severe Acute Pancreatitis and NOX2/ROS/NF-κB Pathway

Author:

Liu Changbo1,Luo Liya1,Suo Shuzhen1,Song Yongkang1

Affiliation:

1. Department of Critical Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511300, Guangdong, China

Abstract

Relationship between polyethylene targeting nanoparticles and key components of the NOX2/ROS/NF-κB signaling pathway has not yet been fully clarified, and their regulatory role in lung injury in severe acute pancreatitis has not yet been confirmed. In this study, severe acute pancreatitis lung injury cells were exposed to polyethylene targeting nanoparticles and MTT method was used to detect cell proliferation. Cell cycle and apoptosis rate were detected using flow cytometry and the expression of NOX2/ROS/NF-κB pathway was detected. The compound polyethylene targeting nanoparticles inhibited proliferation of lung-damaged cells in severe acute pancreatitis dose-dependently (5, 10 and 20 μmol/L), induced G2/M phase arrest, and increased cell apoptosis. In addition, it reduced the expression of NOX2, ROS, and NF-κB, indicating that NOX2/ROS/NF-κB pathway may be inhibited. Polystyrene targeting nanoparticles reduced the expression of IL-6, TNF-α, JAK, STAT, and IL-10. As a targeted drug delivery system, nano-drug-carrying systems help to dissolve drugs that are difficult to dissolve in the drug solution and intervene in the corresponding tissues and cells in a targeted manner. The results of this study showed that polymer-targeted nano-drug systems could regulate the growth of lung-damaged cells in severe acute pancreatitis. Polyethylene targeting nanoparticles may be effective in inhibiting inflammation in lung-damaged cells in severe acute pancreatitis via regulation of NOX2/ROS/NF-κB pathway.

Publisher

American Scientific Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3