Ferric Oxide Nanoparticles Enhance Cytotoxicity and Reduce the Occurrence and Development of Cervical Cancer Metastases

Author:

Cheng Qiujin1,Song Yanhua2,Zheng Fu3

Affiliation:

1. Department of Gynecology, Qianjiang Central Hospital of Hubei Province, Qianjiang, 433100, Hubei, China

2. Department of Obstetrics and Gynecology, Wuhan Tongji Aerospace City Hospital, Wuhan, 430416, Hubei, China

3. Department of Obstetrics and Neurology, The Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital, Yichang, 443002, Hubei, China

Abstract

Fe3O4 nanoparticles can be used in diagnostic imaging and therapeutic applications. However, poor solubility limits its use in tumors. In this study, we used ferric oxide and nanoparticles to covalently bind ferric oxide nanoparticles as a strategy for treatment of cervical cancer metastases. We aimed to evaluate their biological effects on cervical cancer metastases in vivo. Confocal microscopy was used to detect transfection efficiency, ferric oxide or ferric oxide nanoparticles were used to intervene cervical cancer cell lines, and flow cytometry explored cell apoptosis. The mouse model of cervical cancer metastasis was further treated with ferric oxide or ferric tetroxide nanoparticles through intraperitoneal injection. The tumor volume was counted and size was measured. Cell proliferation and apoptosis were detected by IHC and Western-blot was used to detect protein expression. Nanoparticles significantly enhanced the cellular uptake of Fe3O4, which inhibited cell proliferation and promoted cell apoptosis. In the in vivo transplanted tumor model, the same was observed in mice. In the mice model, ferric oxide nanoparticles significantly inhibited the growth of tumors, slowed down tumor growth rate, and accelerated apoptosis. Our research results showed that nanoparticles contributed to the uptake of oxidized particles, and Fe3O4 nanoparticles regulated studied tumors by enhancing cytotoxicity, thereby inhibiting cell proliferation and promoting cell apoptosis, achieving Fe3O4 nanoparticles. The particles significantly inhibited tumor growth, slowed down multiplication rate, and accelerated apoptosis, suggesting that Fe3O4 nanoparticles have a significant inhibitory effect on cervical cancer transplanted tumors.

Publisher

American Scientific Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3