Effect of TiO2 Nanotubes on Biological Activity of Osteoblasts and Focal Adhesion Kinase/Osteopontin Level

Author:

Che Chunqing1,Wang Jinfeng1,Guo Weixiao2

Affiliation:

1. Department of Orthopaedics, Zibo Central Hospital, Zibo, 255036, Shandong, China

2. Department of Orthopaedics, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, 215028, China

Abstract

Osteoblasts are important cells for bone formation and play a major part in bone diseases and bone defects. Clinically, we usually adopt bone implants for related diseases. Also, nanotechnology is important in bones and joints. This study assessed the effects of TiO2 nanotubes of different diameters on osteoblast activity, FAK and OPN levels, aiming to provide an experimental foundation for selection of clinical bone implant materials. The morphology of MG-63 human osteosarcoma cells changed with expansion of TiO2 nanotubes’ diameter. From the biological activity, the cell proliferation and adhesion were enhanced as the diameter of the TiO2 nanotube was increased and its proliferation and adhesion were highest in the 100 nm TiO2 nanotube, which is related to increased ALP activity, FAK and OPN protein and mRNA expression. ELISA detected ALP activity and found that MG-63 cells cultured with 70 nm nanotube had strongest activity. Immune blotting and PCR results showed that, FAK and OPN activities were highest in 70 nm TiO2 nanotube cells. In summary, TiO2 nanotubes increased cell proliferation and adhesion by up-regulating the activities of FAK and OPN in a concentration-dependent relationship.

Publisher

American Scientific Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3