Improvement of Bone Homeostasis Imbalance in Osteoporotic Fractures by Mesoporous Silica Carrying miR-302b

Author:

Chu Jiaqi1,Si Yuan2,Shao Song1

Affiliation:

1. Department of Orthopedics, Lu’an People’s Hospital, Lu’an, Anhui, 237008, China

2. Department of Gynaecology and Obstetrics, The Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China

Abstract

miR-302b and DKK1 are two molecules related to the regulation of bone metabolism. Mesoporous silica is a potential drug carrier. This article aims to study the mechanism of mesoporous silica carrying miR-302b targeting DKK1 regulation to improve bone homeostasis imbalance in osteoporotic fractures. Mesoporous silica nanoparticles were synthesized and characterized. miR-302b was loaded into mesoporous silica to form composite nanoparticles. In vivo rat model experiments were performed to evaluate bone metabolism. X-ray examination and μCT scan were used to detect the bone content and trabecular bone status of rats. Alcian blue/hematoxylin/Orange G staining was used to observe changes in trabecular bone in the tibial metaphysis. Immunohistochemical staining showed the formation of trabecular bone in rats in each group and changes in the number of bone cells. Calcein double labeling experiment showed the bone mineralization speed of mice in each group. Pure and stable mesoporous silica nanoparticles were successfully synthesized and miR-302b was successfully loaded into the nanoparticles. The osteoporotic fracture rat model was successfully created. In vivo experimental results showed that after injecting composite nanoparticles into mice, bone density and bone strength were significantly increased and osteoporotic fractures were improved. Mesoporous silica carries miR-302b to target DKK1 regulation, which can improve bone homeostasis imbalance in osteoporotic fractures. Composite nanoparticles can inhibit the expression of DKK1, promote bone formation, and inhibit bone resorption, thereby improving bone density and bone strength.

Publisher

American Scientific Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3