Novel Synthesis of Fluorescein Isothiocyanate-Based Fluorescent Nanoprobes in Imaging Lung Inflammation

Author:

Dai Li1,Wang Wenjun1,Yan Jie1,Liu Yong1

Affiliation:

1. Department of Respiratory and Critical Care Medicine, Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, P. R. China

Abstract

We aimed to examine the novel synthesis of fluorescent nanoprobes synthesized in imaging lung inflammation and diseased tissues. All reagents were purchased from commercial suppliers to synthesize the PLGA, PEG, GFP, RFP, rhodamine, and magnetic fluorescent nanoprobes. We performed experiments using human lung cells from the Chinese Academy of Medical Sciences Cell Center. The cells were cultured in a DMEM medium. Confocal microscopy was used to label the cells during imaging. All statistical analyses were performed in GraphPad Prism. There were significant differences in the fluorescent intensities of all nanoprobes. The fluorescence intensity of the iron oxide nanoprobes was significantly higher than all other probes, while Cy5.5 and RFP nanoprobes had significantly higher fluorescence intensity than PEG and FITC. Moreover, we found that GFP has a better quantum yield than RFP, while RFP has longer emission wavelengths than GFP. Fluorescent nanoprobes have shown great potential as a non-invasive and sensitive tool for imaging lung inflammation and diseased tissue.

Publisher

American Scientific Publishers

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3