Melatonin-induced transcriptome variation of melon seedlings under salt stress

Author:

Liu Jiecai1,Li Jiaxing1,Li Xiaojing1,Song Yang1,Zhang Zhiwei1,Sun Jing1,Sun Xiaohua1

Affiliation:

1. College Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010018, China

Abstract

Melatonin (N-acetyl-5-methoxytryptamine) is an indole-like hormone that plays a pivotal role in the growth, development, and stress response of plants. Thus, investigating the underlying mechanisms of action and growth regulators involved, is imperative to enhance crop salt tolerance. In this study, seedlings of melon (Cucumis melo L.) grown in hydroponic solution were treated with control (CK), melatonin (50 μM melatonin, MT), salt (60 mM NaCl, ST) and salt with melatonin (60 mM NaCl combined with 50 μM melatonin, MS). The growth potentials including fresh weight, plant height, leaf area and stem diameter, and photosynthesis-associated parameters, and chlorophyll and lipid peroxidation contents of melon seedlings were measured. Transcriptome analysis was performed and a library of differentially expressed genes (DEGs) between ST and MS treatments was screened. Both gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted for these DEGs. Finallly, qRT-PCR assay was performed for verification. The results showed that the growth potentials of melon seedlings treated with MS were significantly better than those of melatonin-free seedlings. Melatonin also moderately alleviated the NaCl-induced oxidative damage. KEGG enrichment analysis emphasized remarkably enriched pathways, which were strongly linked to photosynthesis, signal transduction and phytohormone synthesis. The functional genes in objective KEGG pathways were determined, including PsbY, AUX1, CYCD3, PYR/PRL and so on. The photosynthesis pathway (ko00195) was simultaneously significant in both comparison groups (18 and 3 genes, respectively). Furthermore, several families of transcription factors involved in reaction processes were mainly MYB, AP2-EREBP, and bHLH families. It could be hypothesized that melatonin application effectively improve photosynthetic efficiency and facilitate the endogenous hormone metabolic networks to stimulate the growth of seedlings exposed to high salinity.

Publisher

American Scientific Publishers

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3