Study on marine microplastics monitoring based on infrared spectroscopy technology

Author:

Shang Shengmei1,Guo Yanwei1,Song Jing1,Liu Liping1

Affiliation:

1. Shanghai Urban Construction Vocational College, Shanghai, 201415, China

Abstract

In recent years, microplastics particles have been detected in many sea areas around the world. Microplastics has done great harm to marine and terrestrial seawater ecosystems, so it is necessary to obtain the effective statistical data of microplastics in the environment accurately and quickly for the further study of pollution in microplastics. In this paper, based on IR (Infrared Spectroscopy) technology, hyperspectral images of marine microplastics samples containing different materials were obtained. SVM (Support Vector Machine) algorithm is used to identify microplastics in hyperspectral images. The results show that the microplastics abundance ranges from 5.193 to 20.281 N/L, 6.087 to 38.679 N/L and 7.498 to 11.084 N/L, respectively, and the average abundance is 11.83 N/L, 24.84 N/L and 19.27 N/L, respectively. The types of microplastics in the bottom water of the bay in the study area are mainly fibers (53–68%) and debris (23–34%). NIR (Near Infrared) analysis shows that the characteristic curves of microplastics spectra of the same species with different particle sizes are different. IR technology combined with chemometrics algorithm has great potential for the detection of microplastics in seawater surface and seawater. This method is simple and feasible, and has the feasibility of popularization.

Publisher

American Scientific Publishers

Subject

General Materials Science

Reference23 articles.

1. Parasites can hitch rides on ocean microplastics;Chemical Engineering Progress,2022

2. Training and evaluating machine learning algorithms for ocean microplastics classification through vibrational spectroscopy;Back;Chemosphere,2021

3. Toxicological effects of irregularly shaped and spherical microplastics in a marine teleost, the sheepshead minnow (Cyprinodon variegatus);Choi;Marine Pollution Bulletin,2018

4. Ecological risk assessment of marine microplastics using the analytic hierarchy process: A case study in the Yangtze river estuary and adjacent marine areas;Zhang;Journal of Hazardous Materials,2022

5. Residual additives in marine microplastics and their risk assessment-a critical review;Fauser;Marine Pollution Bulletin,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3