Biochar preparation and its effects with reduced compound fertilizer on nutrients, phenolic acid and fungal community in tobacco rhizosphere soil

Author:

Ma Huan-Jin1,Lin Li2,Chen Ze-Bin1,Xu Sheng-Guang1,Li Yu1,Zhang Rui1,Yi Sheng-Yue1

Affiliation:

1. Faculty of Agronomy and Life Science, Kunming University, Kunming, 650214, Yunnan, China

2. Management Committee of Training Base, Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China

Abstract

Biochar is a carbon-rich soil conditioner produced from pyrolysis of biomass, it has been widely used to enhance soil quality because of its physical adsorption as well as water and fertilizer conservation functions. This work aimed to improve the soil quality of continuously cropped flue-cured tobacco fields using biochar prepared from agricultural waste. To explore the impact of reduced compound fertilizer with biochar application on nutrients, phenolic acid contents and fungi diversity in the rhizosphere soil, 4 treatments were set: regular compound fertilizer application (T1), and biochar with reduced compound fertilizer in different proportions (T2, T3, T4, with 100, 75, 50% of compound fertilizer, respectively). The physicochemical properties of the prepared biochar were characterized and observed using electron microscopy. The results indicated that, a noticeable increase in the content of soil organic matter (SOM) and soil organic carbon (SOC) in T2 treatment compared to T1 treatment. Moreover, T2 treatment demonstrated a significant improvement in the contents of alkali-hydrolyzable nitrogen (AN), available phosphorus (AP), and available potassium (AK), with increases of 9.29%, 15.85% and 25.42% compared to T1 treatment, respectively. While a gradual decrease in soil AN, AP, and AK content was observed with the reduction of compound fertilizer application (T2–T4), there was no obvious difference between T3 and T1. For total phenolic acid, the content in T2 treatment significantly decreased by 35.99% compared to T1 treatment, while T3 and T4 treatments showed significant reductions of 15.30 and 18.73% respectively, compared to T2 treatment. Biochar application could enhance the fungal community’s abundance and diversity in the rhizosphere soil. Fungal community exhibited the highest richness under T3 treatment, while the relative abundance ofFusariumandMortierellareduced as the decrease of compound fertilizer (T2–T4). In conclusion, the reduced compound fertilizer with biochar application could reduce nutrient loss, phenolic acids accumulation, and improving the abundance of fungal community in the rhizosphere soil. This paper provides a reference for biochar combined with compound fertilizer to improve soil from the regulation of allelochemicals and soil fungi.

Publisher

American Scientific Publishers

Subject

General Materials Science

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3