Impact of nanomaterials on microbial communities in the carbon sequestration processes of urban river ecosystems

Author:

Wang Xu1,Cui Youwei1

Affiliation:

1. National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China

Abstract

Herein, zero-valent iron nanoadsorbents were synthesized by hydrothermal and coprecipitation methods. The structure and morphology of the materials were characterized through X-ray diffraction, energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy with EDS. The adsorption performance of nanoscale Fe2O3 nanomaterials was evaluated. Additionally, adsorption experiments were conducted with varying amounts of nanomaterials and initial concentrations of dissolved organic carbon (DOC) in water. The results showed that as the initial concentration of the DOC in water increased, the efficiency of organic carbon removal gradually decreased. In particular, when the initial concentration of the DOC increased from 20 to 35 mg/L, the removal efficiency of the nanomaterials decreased from 85% to 55%. Furthermore, a considerable decrease in the removal efficiency was observed between 30 to 60 min. After 60 min, the efficiency of organic carbon removal was almost constant. The increase in the initial concentration of DOC in water resulted in a gradual decrease in the efficiency of its removal. The decrease in the organic carbon content in water lead to a scarcity of carbon sources for microbial reproduction, thereby reducing the microbial population considerably. This study provides a clear evidence of the pronounced carbon fixation effect of nanomaterials and their ability to control microbial population in aquatic ecosystems.

Publisher

American Scientific Publishers

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3