H727 Multicellular Spheroids and Its Resistance to Antitumor Drugs Sunitinib and Axitinib

Author:

Wang Zhengyang1,Chen Hao2,Zhou Naizhen1,Zhang Tianzhu1,Ren Pengfei1,Chen Gang2

Affiliation:

1. State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China

2. Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China

Abstract

The three-dimensional (3D) culture model of neuroendocrine tumor H727 cells was established by using the agarose gel as culture matrix, which provided a new method for drug screening of neuroendocrine tumors. As VEGFR inhibitor, sunitinib and axitinib were applied to inhibit human neuroendocrine H727 cell line in two-dimensional (2D) and 3D culture models. The inhibitory rate of H727 cells with different drug concentration were assessed by CCK-8 assay method and combined with using the FDA/PI double staining and the digital microscope analysis system. When the concentration of sunitinib ≥4.0 μmol/L, the H727 spheroids began to split, and the apoptosis of H727 cells occurred, the sizes of multicellular spheroids was significantly reduced in the groups of high-dose axitinib. These results illustrated that sunitinib and axitinib can effectively inhibit the growth and proliferation of neuroendocrine tumor H727 cells. Sunitinib and axitinib can also promote apoptosis of H727 cells.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3