Effects of Magnetic Domain Walls on the Anisotropic Magnetoresistance in NiFe Nanowires

Author:

Nam Chunghee

Abstract

We show that a type of magnetic domain walls (DWs) can be monitored by anisotropic magnetoresistance (AMR) measurements due to a specific DW volume depending on the DW type in NiFe magnetic wires. A circular DW injection pad is used to generate DWs at a low magnetic field, resulting in reliable DW introduction into magnetic wires. DW pinning is induced by a change of DW energy at an asymmetric single notch. The injection of DW from the circular pad and its pinning at the notch is observed by using AMR and magnetic force microscope (MFM) measurements. A four-point probe AMR measurement allows us to distinguish the DW type in the switching process because DWs are pinned at the single notch, where voltage probes are closely placed around the notch. Two types of AMR behavior are observed in the AMR measurements, which is owing to a change of DW structures. MFM images and micromagnetic simulations are consistent with the AMR results.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Techniques in micromagnetic simulation and analysis;Journal of Physics D: Applied Physics;2017-07-31

2. Shape-coupled magnetoresistive structures: a new approach to higher sensitivity;Technical Physics Letters;2016-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3