Electrochemical Detection of Human Mesenchymal Stem Cell Differentiation on Fabricated Gold Nano-Dot Cell Chips

Author:

An Jeung Hee,Kim Seung U.,Park Mi-Kyung,Choi Jeong Woo

Abstract

Human mesenchymal stem cells (MSCs) have the capacity for self-renewal and maintain pluripotency, which is defined by their ability to differentiate into cells such as osteoblasts, neurons, and glial cells. In this study, we report a method for defining the status of human MSCs based on electrochemical detection systems. Gold nano-dot structures were fabricated using a nanoporous alumina mask, and the structural formations were confirmed by scanning electron microscopy (SEM). Human MSCs were allowed to attach to RGD (Arg-Gly-Asp) peptide nanopatterned surfaces, and electrochemical tools were applied to the MSCs attached on the chip surface. The cultured MSCs were shown to differentiate into neural cell types, as indicated by immunocytochemical staining for tyrosine hydroxylase and beta tubulin III. Following treatment with basic fibroblast growth factor (bFGF) for 14 days, most of the B10 cells exhibited bipolar or multipolar morphology with branched processes, and the proportion of B10 cells expressing neuronal cell markers considerably increased. Electrophysiological recordings from MSCs treated with bFGF for 5–14 days were examined with cyclic voltammetry, and the electrochemical signals were shown to increase during differentiation from MSCs to neuronal cells. This human MSC cell line is a useful tool for studying organogenesis, specifically neurogenesis, and in addition, the cell line provides a valuable source of cells for cell therapy. The electrochemical measurement system proposed here could be utilized in electrical cell chips for numerous applications, including cell differentiation, disease diagnosis, drug detection, and on-site monitoring.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3