Author:
Cho Jinwon,Lee Sangheon,Han Jonghee,Yoon Sung Pil,Nam Suk Woo,Choi Sun Hee,Hong Seong-Ahn,Lee Kwan-Young,Ham Hyung Chul
Abstract
In this study, using spin-polarized density functional theory calculation we examined the origin of enhanced catalytic activity toward H2 production from HCOOH in Ag19@Pd60 core–shell nanoclusters (a 79-atom truncated octahedral cluster models).
First, we find that the Pd monolayer shell on the Ag core can greatly enhance the selectivity to H2 formation via HCOOH decomposition compared to the pure Pd79 cluster by substantially reducing the binding energy of key intermediate HCOO and in turn the barrier for dehydrogenation.
This activity enhancement is related to the modification of d states in the Pd monolayer shell by the strong ligand effect between Ag core and Pd shell, rather than the tensile strain effect by Ag core. In particular, the absence of dz2–r2 density
of states near the Fermi level in the Pd monolayer shell (which originated from the substantial charge transfer from Ag to Pd) is the main reason for the increased H2 production from HCOOH decomposition.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献