Electrochemical Characterization of Poly-L-Lysine Coating on Indium Tin Oxide Electrode for Enhancing Cell Adhesion

Author:

Choi Yonghyun,Yagati Ajay Kumar,Cho Sungbo

Abstract

Nano or microelectrode-based cell chip for stimulating or recording neuronal signals requires better cell adhesion procedures in order to achieve efficient cell based assays for effective cellular diagnosis and for high throughput screening of drug candidates. The cells can be adhered on protein pre-coated sensing electrodes, but the electrochemical characteristics of cells are highly influenced by the electrical charge of the underlying protein interface. Thus, in this study, we report on experimental and theoretical aspects of poly-L-lysine (PLL) adsorption on transparent indium tin oxide (ITO) electrodes and the interaction between PLL and human embryonic kidney 293/GFP cells. PLL coated ITO electrodes showed a lower transfer resistance compared to bare or bovine serum albumin coated ITO electrodes. In addition, they exhibited more positive potential and higher magnitude of redox peak currents with increased immersion time of PLL solution. Finally, results of the impedance analysis showed that adhesion of cells was enhanced by PLL coating on ITO electrodes compared to bare ITO electrodes.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3