Author:
Song Myoung Geun,Han Jun Young,Bark Chung Wung
Abstract
In recent years, there has been increasing interest in the bandgap engineering of ferroelectric oxides to improve absorbance of the solar spectrum, which is governed by their band gap. To enhance the photovoltaic efficiency by tuning the optical bandgap of complex oxides, an attempt
was recently made to reduce the optical band gap of iron doping of lanthanum-modified Bi4Ti3O12-based oxides (Fe-BLT) using oxygen vacancy doping. To study the tunability of the optical band gap from the generation of oxygen vacancies, the thermal treatment
time and temperature were controlled during heat treatment under a vacuum environment. The structural, optical properties of the synthesized podwers were examined by X-ray diffraction, scanning electron microscopy, and ultraviolet-visible spectroscopy. Typically, an oxygen vacancy in a complex
oxide can alter their structure very easily. On the other hand, the ultraviolet-visible absorption spectra of iron-doped bismuth titanate ceramics under optimal conditions (12 h, 800 °C) showed a decrease in optical bandgap from 2.02 eV to 1.8 eV without a corresponding change in their
crystallographic structure. This study suggests that optimal control of the thermal treatment time and temperature critically effects the optical band gap of complex oxides.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献