Influence of Parametric Variations on Hydrothermal Growth of ZnO Nanostructures for Hybrid Polymer/ZnO Based Photodetector

Author:

Dixit Tejendra1,Bilgaiyan Anubha1,Palani I. A2,Singh Vipul1

Affiliation:

1. Molecular and Nanoelectronics Research Group (MNRG), Department of Electrical Engineering, IIT Indore, Indore, Madhya Pradesh, India

2. Mechatronics and Instrumentation Lab, Department of Mechanical Engineering, IIT Indore, Indore, Madhya Pradesh, India

Abstract

Dumbbell and flower like ZnO nano-crystals were grown via hydrothermal process. The as-prepared dumbbells, with length of 0.8–10 μm and edge length of 0.3–0.8 μm possess a hexagonal structure, while flowers with lengths ranging from 1–6 μm with hexagonal structure have been synthesized. The effect of temperature, solution concentration and growth time on the size and shapes of the ZnO nanostructures has been studied using Field emission scanning electron microscope (FESEM) and X-ray diffractometer (XRD). Further the optical properties of nanostructures were investigated by Photoluminescence (PL) spectroscopy, which shows emission in UV and visible regions. From Diffused reflectance spectroscopic analysis (DRA) it was observed that ZnO nanodumbbells and nanoflowers have a direct band gap of 3.27 eV and 3.25 eV respectively. The I–V plot showed dependence of current values under dark and illumination over the annealing temperature during the growth stage. Thus we report a control over the shape and dimension of nanostructures by varying various parameters having implications for (opto)electronic devices.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3