Hydrothermal Synthesis and Luminescent Properties of Eu3+ Doped Sr3Al2O6 Phosphor for White LED

Author:

Li Xu1,Pan Heng1,Tang Aiwei2,Zhang Jinping1,Guan Li1,Su Hongxin1,Dong Guoyi1,Yang Zhiping1,Wang Huike1,Teng Feng1

Affiliation:

1. Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China

2. Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiao Tong University, Beijing 100044, China

Abstract

Eu3+ ions doped Sr3Al2O6 phosphors were successfully synthesized via a hydrothermal method. The precursor was prepared by low temperature hydrothermal method using ammonia as both alkaline source and precipitator. Then the final product was obtained by high temperature sintering. In addition, the structures, morphologies, and luminescent properties of as-prepared products were thoroughly characterized by X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), Fluorescence spectroscopy (PL). XRD shown a single phase Sr3Al2O6 prepared by a facile hydrothermal method at 250 °C for 10 h. In the PL spectra of as-prepared samples, the optimal value of Eu3+ concentration is 2 mol%. From the fluorescent spectra, the emission peaks of Sr3Al2O6: Eu3+ phosphors are centered at around 591 nm, and the excitation peaks are centered at around 233 nm, 323 nm, 394 nm, and 468 nm, respectively, which were assigned to the characteristic transition of Eu3+ ions. The influence of ammonia, and the synthesis temperature on the luminescent properties of Sr3Al2O6: Eu3+ phosphors were studied in detail. The alkaline earth aluminates luminescent materials activated by rare earth ions have good prospects in the field of new-generation light sources.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3