Synthesis, Characterization and Luminescence Properties of Rod-Like LaPO4:Eu3+ Nanostructures

Author:

Peng Li1,Yun Liu1,Xiaolei Shi1,Yaxin Guo1,Gangqiang Zhu2

Affiliation:

1. School of Electric and Information Engineering, Shaanxi University of Science and Technology, Xi’an, 710021, China

2. School of Physics and Information Technology, Shaanxi Normal University, Xi’an, 710062, China

Abstract

Large-scale, rod-like nanostructures of LaPO4:Eu3+ phosphors were synthesized using a simple hydrothermal method. The phase composition, structure and morphology of the final products were characterized by XRD, FE-SEM and TEM. Highly crystalline material was obtained as confirmed by X-ray powder diffraction measurements. The FE-SEM and TEM observations indicate that the obtained LaPO4:Eu3+ nanorods have a diameter of about 10–20 nm, and a length of about 100–600 nm. Meanwhile, the excitation and emission spectra of the products at room temperature were measured using a fluorescence spectrometer. The effects of pH and Eu3+-doping on the morphology and luminescence properties of the as-prepared powders were investigated. The photoluminescence (PL) spectra show that the emission intensity of the LaPO4:Eu3+ phosphors improved with increases in concentrations of Eu3+ from 3 mol% to 14 mol%, and then decreased for higher concentrations.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3