Affiliation:
1. College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
2. Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
Abstract
Homogeneously doped Yb3+ and Er3+ cerium-based coordination polymer (CP) microspheres have been successfully synthesized on a large scale through a simple solvothermal route with 2, 5-pyridinedicarboxylic acid (2, 5-H2PDC) as the organic linker. CeO2:Yb3+,
Er3+ porous microspheres were obtained by annealing the corresponding CP microspheres at 600 °C for 4 h under atmospheric pressure. These as-prepared products were characterized by Powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy
(TEM), Fourier transform infrared spectroscopy (FTIR), energy-dispersion X-ray (EDX) spectroscopy, Thermogravimetric (TG) and derivative thermogravimetric (DTG) analysis. The room temperature upconversion luminescent spectra of the as-prepared microspheres were carried out by 980 nm NIR light
excitation. Interestingly, Yb3+ and Er3+ codoped CP microspheres give a single-band emission centered at 673 nm, while the CeO2:Yb3+, Er3+ microspheres give emission in green and red region, with red being the dominant emission. The emission
intensity of the CeO2:Yb3+, Er3+ microspheres were much stronger than that of the Yb3+ and Er3+ codoped CP microspheres.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献