Affiliation:
1. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
Abstract
Well defined two kinds of cationic amphiphilic block copolymers Poly(4-vinylbenzyltriethylammonium chloride)-b-Poly(styrene) are synthesized by combining reversible addition fragmentation chain transfer polymerizations and post-polymerization quaternization. Block copolymers
are characterized by GPC and 1HNMR. The self-assembly behaviors of the block copolymers are studied, which are characterized by TEM. For Poly(4-vinylbenzyltriethylammonium chloride)13-b-Poly(styrene)136, crew-cut spherical micelles are obtained by using
DMF as the initial common solvent, and the majority of the pearl series aggregates and a small amount of rod-like aggregates are all observed by using the mixture of DMF and THF as the initial common solvent. The formation process of rod-like aggregates is proposed in three steps: the micellization
of copolymer chains, the formation of pearl series aggregates from the collision and fusion of individual initial spherical micelles, and the transformation from pearl series aggregates to rod-like aggregates. For Poly(4- vinylbenzyltriethylammonium chloride)18-b-Poly(styrene)370,
large compound micelles and complicated spherical aggregates and small vesicles are all obtained. The formation process of small vesicles is also proposed in three steps: the formation of initial spherical micelles with some hydrophilic block Poly(4-vinylbenzyltriethylammonium chloride) embedded
in the core, the removing of the outer layer common solvent, and solvent nucleation in the center. It should be noted that solvent nucleation is critical, because of the hydrophilic block Poly(4-vinylbenzyltriethylammonium chloride) and the common solvent and water embedded in the core of
the initial spherical micelles.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献