Influence of Pt and Pd Modification on the Visible Light Photocatalytic Activity of N-Doped Titania Photocatalysts

Author:

Hu Yulong1,Dong Fu1,Liu Hongfang2,Guo Xingpeng2

Affiliation:

1. College of Science, Naval University of Engineering, Wuhan 430033, China

2. School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Pd and Pt modified N-doped titania nanoparticle powders were prepared by a facile sol–gel method. Nitrogen doping and metal modification were carried out simultaneously during the preparation process. The as-prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and X-ray photoelectron spectroscopy (XPS). The visible light photocatalytic activities of the asprepared samples were evaluated by analyzing their effect on the photocatalytic decomposition of methyl orange (MO). The chemical state of the metal is the key factor determining the performance of metal modified N-doped titania. The Pd used to modify the N-doped titania (Pd-NT) in our study was of the PdOx(x≤2) species, which increased the absorbance in the visible light region, decreased the recombination of photo-generated electron–hole pairs, and resulted in a significant enhancement in the visible light photocatalytic activity. The Pt species used to modify the N-doped titania (Pt-NT) was mainly in the metallic state, which resulted in a decrease in the absorbance in the visible light region, and an increase in the recombination of photo-generated electron–hole pairs. Pt modification led to a deterioration in the visible light photocatalytic activity of the material.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3