Effects of Ti4+ Ions on Fluorescence Properties of Sr2CeO4:Sm3+ Phosphors

Author:

Jiao Haiyan1,Wang Peiyu1,Liu Liwei1,Wang Yuhua2

Affiliation:

1. Key Laboratory for Electronic Materials of the State National Affairs Commission of PRC, Northwest University for Nationalities, Lanzhou 730030, P. R. China

2. Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China

Abstract

Ti4+-doped Sr2CeO4:Sm3+ phosphors were synthesized with the solid-state reaction method and the effects of doping Ti4+ on the photoluminescence properties were investigated in detail. A broad excitation band ascribed to the O2-–Ce4+ transition was observed in the range of 200 to 400 nm and with doping Ti4+ into Ce4+ sites, the intensity of charge transfer band of O2- →Ce4+ (300–370 nm) was significantly broaden and enhanced. As a result, the emission intensity of Sr2Ce1xTixO4 has improved about 85% by doping 0.01 mol Ti4+. White emission of −Sr2-yCe0.99Ti0.01O4:ySm3+ at y ≤ 0.03 is due the co-existence of Ce4+ → O2- CT emission and 4G5/26HJ Sm3+ transitions whereas only the Sm3+ red emission prevails for 003<y≤0.15. The Sr1.99Ce0.99Ti0.01O4:0.01Sm3+ phosphor exhibited excellent color purity. Its chromaticity coordinate is measured to be (0.326, 0.322), which is close to the pure white (0.33, 0.33). The results showed that Sr1.99Ce0.99Ti0.01O4: 0.01Sm3+ phosphors could be considered as a potential single-phase white-emitting phosphor for white light-emitting diodes.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3