Affiliation:
1. Department of Fundamental Courses, Academy of Armored Force Engineering, Beijing 100072, P. R. China
Abstract
Bright blue Electroluminescence come from a ITO/BBOT doped silica (6×10−3 M) made by a sol–gel method/Al driven by AC with 500 Hz at different voltages and Gaussian analysis under 55 V showed that blue emission coincidenced with typical triple emission from
BBOT. This kind of device take advantage of organics (BBOT) and inorganics (silica). Electroluminescence from a singlelayered sandwiched device consisting of blue fluorescent dye 2,5-bis (5-tert-butyl-2-benzoxazolyl) thiophene (BBOT) doped silica made by sol–gel method was investigated.
A number of concentrations of hybrid devices were prepared and the maxium concentration was 6×10−3 M. Blue electroluminescent (EL) always occurred above a threshold field 8.57×105 V/cm (30 V) at alternating voltage at 500 HZ. The luminance of the devices
increased with the concentration of doped BBOT, but electroluminescence characteristics were different from a single molecule’s photoluminescence properties of triple peaks. When analyzing in detail direct-current electroluminescence devices of pure BBOT, a single peak centered at 2.82
eV appeared with the driven voltage increase, which is similar to the hybrid devices. Comparing Gaussian decomposition date between two kinds of devices, the triple peak characteristic of BBOT was consistent. It is inferred that BBOT contributed EL of the hybrid devices mainly and silica may
account for a very small part. Meanwhile the thermal stability of matrix silica was measured by Thermal Gravity-Mass Spectroscopy (TG-MS). There is 12 percent weight loss from room temperature to 1000 °C and silica has about 95% transmittance. So the matric silica played an important role
in thermal stability and optical stability for BBOT. In addition, this kind of blue electroluminescence device can take advantages of organic materials BBOT and inorganic materials silica. This is a promising way to enrich EL devices, especially enriching inorganic EL color at a low cost.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献