Preparation and properties of bamboo/polymer composites enhanced by in situ polymerization of furfuryl alcohol

Author:

Wang Yong,Deng Layun,Xiao Zhihong,Li Xianjun,Fan Youhua,Li Changzhu

Abstract

The objective of this paper aimed to develop a novel method to prepare enhanced bamboo-based materials. Furfuryl alcohol (FA) was used as the modification agent with maleic anhydride (MA) as the catalyst. Different bamboo samples were prepared with different FA addition level (10 wt%, 20 wt% and 30 wt%). The furfurylated bamboo samples were characterized by confocal laser scanning microscopy (CLSM), Fourier transform infrared spectrometry (FTIR), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). Moreover, the physical and mechanical properties including weight percent gain (WPG), water uptake (WU), thickness swelling (TS), modulus of rupture (MOR), and modulus of elastic (MOE) were investigated in detail. Additionally, the decay resistance of pristine and furfurylated bamboo samples was also investigated. The results showed that FA resins were incorporated into bamboo and polymerized within cell walls. The WPG, WU, and TS were dependent on FA addition level. When the FA addition level reached 30 wt%, the physical properties were all improved significantly. However, due to acidic MA as the catalyst, MOR of furfurylated bamboo samples was enhanced only 2.5% while MOE was weakened. The thermal stability and decay resistance of furfurylated bamboo were all enhanced significantly compared to pristine bamboo. Especially, furfurylated bamboo treated with 30 wt% FA achieved Class I Strong Decay Resistance (<10%) with 5.3% of mass loss.

Publisher

American Scientific Publishers

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3